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ABSTRACT 

The ground surveillance radar group of the Radar and Space Division of DREO has a 

requirement to investigate the feasibility and propose a cost effective approach of correcting the 

Real Time Quality Control (RTQC) registration error problem of the North Warning System 

(NWS). The U.S. developed RTQC algorithm works poorly in northern Canadian radar sites. This 

is mainly caused by the deficiency of the RTQC algorithm to calculate properly the radar position 

bias when there is a low aircraft traffic in areas of overlapping radar coverage. This problem 

results in track ambiguity and in display of ghost tracks. In this report, a modification of the 

RTQC algorithm using least-square techniques is proposed. The proposed Least-Square RTQC 

(LS-RTQC) algorithm was tested with real recorded data from the NWS. The LS-RTQC 

algorithm was found to work efficiently on the NWS data in a sense that it works properly in a 

low aircraft traffic environment with a low computational complexity. The algorithm has been 

sent to the NORAD software support unit at Tyndall Air Force Base for testing. 

RESUME 

Le groupe Radar de Surveillance au Sol de la Division du radar et de l'aerospatiale du 

CRDO a la täche d'evaluer la faisabilite et de proposer une approche economique pour la 

correction de l'algorithme RTQC utilise pour aligner les radars du Systeme d'alerte du Nord 

(NWS). L'algorithme RTQC developpe aux E.U. fonctionne convenablement pour un reseau de 

radars ayant une circulation aerienne adequate dans leurs zones de recouvrement respectives. 

Cependant, pour la region du Nord canadien oü la circulation aerienne est faible, l'algorithme 

ne reussit pas ä calculer correctement les erreurs systematiques de position des radars du NWS. 

Cette deficience cree un dSdoublement des pistes et une ambiguite dans leur identification. Dans 

ce rapport, une modification de l'algorithme RTQC utilisant la methode des moindres carres est 

proposee. L'algorithme propose (LS-RTQC) a ete teste avec des donnees reelles du NWS. II 

a ete trouve que l'algorithme LS-RTQC travaille efficacement pour des radars du NWS situes 

dans des zones de faible circulation aerienne tout en ne necessitant qu'une faible complexite de 

calcul. L'algorithme a ete envoye au Centre NORAD de soutien informatique de la base Tyndall 

(Floride) pour etre evalue. 

in 



EXECUTIVE SUMMARY 

The Real-Time Quality Control (RTQC) registration calculation routine currently used in 

the North Warning System (NWS) has shown some abnormalities. It was observed that RTQC 

was on and working in Canada East (CE) but was off in Canada West (CW) where the traffic 

density was low. While CE has a "zero" correction factor, CW runs with a sizable correction 

factor. More precisely, registration errors on tracks in the coverage of NWS sites are not being 

corrected by the RTQC routine according to its specification. In addition, the RTQC routine also 

makes large corrections occasionally for no particular reason. 

The Radar and Space Division has been tasked to investigate the deficiency of this 

registration procedure. In this report, we provide 1) a clear definition of the RTQC problem; 2) 

an evaluation of the RTQC algorithm and 3) a proposal of a cost effective approach of RTQC 

resolution under the condition that large numbers of tracks are not available. 

After briefly describing the registration problem in the NWS, we propose a cost effective 

modification of the RTQC algorithm called the Least Square RTQC (LS-RTQC ). The LS-RTQC 

algorithm reduces the registration error by minimizing the distance between measurements 

recorded by different radars in the least square sense, and estimates the bias using the singular 

value decomposition. The main advantage of this LS-RTQC routine is the elimination of the need 

of measurements from both sides of the radar site line required by the current RTQC routine. 

Because of the low traffic density problem of Canada, the situations that the NWS has data on 

only one side occur very often. 

Real NWS data are used to evaluate the efficiency of the LS-RTQC algorithm. The LS- 

RTQC algorithm is applied to both CE and CW data, and is found to work efficiently for both 

data sets. The finite precision effect, computational complexity, uncertainty due to measurement 

noise and stereographic projection, effects of the 2nm check and generalization ability of the LS- 

RTQC algorithm are also analyzed. Comparing with the old RTQC algorithm, the LS-RTQC 

algorithm is observed to be more robust, accurate and computationally efficient. 
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1. INTRODUCTION 

In order to make correct decisions, air defence systems, air traffic control systems or, 

more generally, command and control (C2) systems depend on a surveillance system to provide 

an overall picture of the air situation. To maintain an accurate, complete and current air picture, 

the surveillance subsystem, in turn, depends on a suite of netted sensors to provide the raw data 

from which that picture is constructed. The general registration problem arises whenever we 

want to combine information from two or more sensors into a single "system level" surveillance 

picture. The most important attribute of a good surveillance picture is that it contains exactly 

one track for each object detected by at least one sensor in the system. The fundamental 

problem in sensor netting, therefore, is to determine whether the data reported by two or more 

sensors represent a common object or two ( or more ) distinct objects. 

Before this can be accomplished successfully, however, the individual sensor data must 

be expressed in a common coordinate system, free from errors due to site uncertainties, antenna 

orientation, and improper calibration of range and time. The process of ensuring the requisite 

"error free" coordinate conversion of sensor data is called registration. Several sources of 

registration errors have been proved to be major problems in current air defence and air traffic 

control systems: position of the radar with respect to the system coordinate origin, alignment of 

the antennas with respect to a common North reference (that is, the azimuth offset), range offset 

errors and coordinate conversion errors with 2D radars. These registration errors are systematic 

and not random [1]. The errors occur in the reported aircraft position, and large errors will 

result in two apparent aircraft when only one real aircraft exists. 

The Real-Time Quality Control (RTQC) routine [2] is a popular approach to this problem 

[1], and it is used in the North Warning Systems (NWS). However, the present RTQC routine 

in NWS has shown some abnormalities [3]. It was observed that RTQC was on and working 

in Canada East (CE) but due to its dysfunction, RTQC was off in Canada West (CW). While 

CE has a "zero" correction factor, CW runs with a sizable correction factor [3]. Registration 

errors on tracks in the coverage of NWS sites are not being corrected by the RTQC routine 
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according to its specification. If more than two radars overlap in areas of heavy traffic, then the 

RTQC routine works effectively. The problem occurs when the amount of traffic is low. As 

a result, the RTQC routine does not have enough data to provide an bias estimate, and a 

significant amount of the system surveillance is spent on trying to correct deviations manually. 

The RTQC routine also makes large corrections occasionally for no particular reason. 

The DND Headquarters (FG/CANR HQ ) has established a priority request to resolve the 

RTQC deficiency which results in two tracks vice one being displayed in areas of overlapped 

radar coverage. The request has been identified as an operational capability deficiency with 

potential negative flight safety implications. The Radar and Space Division of DREO has been 

asked to investigate the feasibility and propose a cost effective approach of correcting the RTQC 

registration error problem. The task includes 1) a clear definition of the RTQC problem; 2) an 

evaluation of the RTQC algorithm and 3) proposal of a cost effective approach of RTQC 

algorithm under the condition that large numbers of tracks are not possible. This report is 

written as a partial fulfilment of the project. In Section 2, the registration problem and the 

North Warning System are briefly described. We will present the RTQC registration algorithm 

in Section 3. A cost effective modification of the RTQC algorithm called the Least Square 

RTQC ( LS-RTQC ) is proposed in Section 4. Analysis of the LS-RTQC algorithm using real 

NWS radar data and the comparison with the RTQC algorithm are presented in Section 5. 

2. THE REGISTRATION PROBLEM OF THE NORTH WARNING RADAR NETWORK 

The North Warning System ( Figure 1 ) is designed to provide U.S. and Canada with 

early warning of air attack over the North Pole from the former Soviet Union. While the older 

system was built to detect Soviet bomber flying at normal altitude, the new radars also will watch 

for low-flying aircraft and ground-hugging cruise missiles. 

The bulk of the work will be handled by 15 AN/FPS 117 long-range radars, built by 

General Electric, Syracuse, N.Y.   The one gigahertz radars employ a 24-by-24-foot phase array 



Figure 1 The North Warning System Radar Network 



panel that is mechanically rotated to give a 360" coverage. With a range of 200 nautical miles, 

the long-range radar will pinpoint both the bearing of a target and its altitude up to 100,000 feet. 

Each radar also carries an IFF beacon for target identification. 

Filling the gaps between the long-range radars, particularly at low altitude, will be 39 

AN/FPS 124 radars under development by Unisys, Great Neck, N.Y. Using newer phased-array 

technology, the AN/FPS has a maximum range of 70 nautical miles, and will be able to spot 

smaller targets than the long-range systems at altitude up to 15000 feet. Designed to detect 

cruise missiles, the FPS-124 antenna is a 12 ft tall cylindrical shaped phased-array panel 

providing 360° coverage. The short-range radars carry no IFF beacon, and do not give target 

altitude readings. With only 11 moving parts - all cooling fans for the electronics - these radars 

will operate unattended most of the time. 

Communications between the long- and short-range radars and the control centers at 

Barter Island Air Force Station on Alaska's north slope and Canada's Regional Operations 

Control Center at North Bay, Ontario, will be via Anik communications satellite. Each site in 

the system has two satellite dishes for communications. The unattended FPS 124 radars will 

be operated by satellite remote control, with operators thousands of miles away collecting data, 

monitoring systems and switching on backup systems if there is a break down in the primary 

system. 

Radar data used in this report were collected from the AN/FPS-117 long-range radars. 

Tracks of air targets arise from commercial airlines flying in the north.      The operating 

specifications are summarized as follows: 

• operating frequency: 1215 - 1400 MHz 

• instrumented range: 5 - 200 nmi 

• azimuth coverage: 360* in 12 seconds 

• range resolution: 300 meters 

• azimuth beamwidth: 2.2* 

• probability of detection: 0.75 



To remove the effect of false targets ( clutter ), target IDs provided by the IFF beacon are used 

to extract true aircraft tracks from radar plots for registration calculation. 

To present an air picture from radars in different locations for operator display, the north 

warning netted radar system employs the stereographic projection [4,5] to map the elliptical earth 

on a plane. To do that, the elliptical earth is first transformed conformally to a sphere and then 

mapped stereographically to a plane. The conformal latitude <|> of a radar site or the region 

center is related to its geographic latitude L by the following relation: 

tan JL+i] = tan[-+- 
4   2\ [4   2 

1-esinZ, 
1+esinl 

e 
(1) 

where e is the eccentricity of the earth. For computational convenience, the conformal latitude 

is obtained from the geographic latitude by the following series approximation of the above 

equation. 

<t> = sm_1(/l+£sm2L+Csm4L+Dsm6L)sinZ, (2) 

where A = 0.99330568, B = 0.00663467, C = 0.00005909, and D = 0.00000055. 

There is a scale factor associated with the mapping from the ellipsoid onto the conformal 

sphere, and there is also a scale factor associated with the process of mapping from the conformal 

sphere onto points on the common coordinate plane. The product of these two scale factors 

gives the total scale factor, associated with the projection of the ellipsoid onto the plane. The 

total scale factor for each of the radar sites is calculated using the following equation: 

l 

2cos<t>i(l-e
2sin2Li)

2 (3) 
0.   =    —  

'      EcosL^l+sin^jSin^Q+cos^cos^cosAX) 

where Eq is earth's equatorial radius, c2 is the square of the earth's eccentricity, <|>0 is the 

conformal latitude of the region center, (|>, and L, are the conformal and geographical latitude 

respectively of the location under consideration, AX = X,- - V where X,- is the longitude of the 



location under consideration and A,, is the longitude of the region center. 

The radius ( E0) of the conformal sphere is typically chosen to minimize the maximum 

distortion in distances that is encountered across the geographical region of interest. The 

following choice of £, serves the purpose [5]: 

min     max 

where amin and a^ are the minimum and maximum values of a, for all radar sites and the region 

center. 

The equations used for transforming radar positions ( geographic latitude and longitude ) 

into rectangular coordinates to the region plane are then given as: 

sinAAcosd) 
xs = 2E0  

1 +sin<j)rsin<J)0 +cos(J>rcos(J>0cos A A 
sin<t>rcos<|)0 -cos4>rsin(J>0cos A A 

1 +sin<J);.sin<j)0+cos4)/eos0cosA X 

where E0 is the radius of the conformal sphere and <J>0, 0r and AX are defined as before. 

The next step in the conversion phase is to find the rectangular coordinates ( x\ y') of 

a target on the local radar plane.   This is accomplished using the following equation: 

x1 = Rgsm(drTr) 

y' = Rcos(Qt-Tr) 
(6) 

where Tr is the north correction angle and 0, is the azimuth of the target, measured clockwise 

from the positive v-axis in the local radar plane. 

To compute the stereographic ground range (Rg)of the target from slant range ( Rs) and 

height ( H,), several schemes are available [4,5].    These schemes make tradeoff between the 



accuracy of a ground range approximation and the corresponding processing requirements. 

Because of the computational difficulties associated with calculating stereographic ground range, 

the following approximations have been made. 

i4r(l.0025/^-0.65)      ifnoheightisavailable 

*     ^ A^R]-(HrHf otherwise 
(7) 

where Ar is a site-dependent constant computed using the following equation: 

2EJcr 

T     2E+H+5 
(8) 

and 

2      2 

k  = 1+  
r ^2 

Er  = E« 

4E0 

,2 
(9) 

cos2Lr+(l-e2Ysm% 

l-e2sin2L, 

where Lr and Hr are the geographic latitude and height of the radar site above mean sea level 

respectively. 

Target azimuth is measured relative to true north at the radar location. The azimuth must 

be adjusted so that it is relative to true north at the origin of the common coordinate system. 

The amount by which the azimuth must be adjusted is given by the angle of rotation of the local 

plane with respect to the common coordinate plane that can make the axes of the two planes 

parallel. This angle is known as the north correction angles ( Tr) and is computed using the 

following equation: 

Tr = tan -l 
-(sin<j>r+sin(J)0)sinA X 

(10) 
cos^cos^Q+Cl +sin<j>rsin(}>0)cosAA. 

where <}>0 is the conformal latitude of the region center, <))r is the conformal latitude of the radar 



site, AX, = \ - \ where \ is the longitude of the radar site under consideration and \ is the 

longitude of the region center. 

In the transformation phase, the rectangular coordinates (x\ y') of the target in the radar 

plane is transformed into the rectangular coordinates ( x, y ) in the region plane using the first 

order approximation: 

* = X^\ (ID 
y = ys

+y 

where ( x^ ys) is the rectangular coordinates of the radar in the region plane. 

For the NWS multiradar data, the north correction angle Tr and the site dependent constant 

Ar for each radar are provided with the data. Figures 2 and 3 display some typical multiradar 

data using the stereographic projection collected from CW and CE. The traffic in CW is less 

than that in CE especially in the overlapping area such as NBO and NCO of the CW data, which 

is an observation reported by Operations Control Center at North Bay [3] as a cause of the 

deficiency of the RTQC algorithm. 

3. THE REAL TIME QUALITY CONTROL (RTQC) ALGORITHM 

The RTQC routine [2] analyzes radar data concurrently for one or more radar sites on a 

real-time basis to determine registration errors. When a radar return correlates with a track, all 

information related to the track are saved for use by the RTQC routine. For every other frame 

( or scan ), the RTQC routine operates and performs calculations on the data that were saved 

during the two frame intervals. The output of each RTQC computation is applied to subsequent 

incoming radar data. 

The registration error has two components: a range error and an azimuth error.    To 



Figure 2 Stereographic projection of CW multiple radar data 
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Figure 3 Stereographic projection of the CE multiple radar data 
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visualize the presence of registration error, consider a site pair ( SA, SB ) as shown in Figure 4. 

Let ( ARA, A0A ) and ( ARB, A9B ) be the range and azimuth biases of the radar return relative 

to site A and B. Let ( x^, vM ) and ( xSB, ySB ) be the stereographically projected region 

coordinates of site SA and site SB respectively. Let (xA', yA) and (xB, yB ) be the coordinates 

of the target relative to site A and B respectively. Let ( RA, QA ) and ( RB, QB ) be the ground 

range computed from Eq.(7) and azimuth of the radar return relative to site A and B. 

In according to this convention, the coordinates of the target relative to site A and B may 

be expressed as follows: 

x'A = (RA-ARA)sm(QA-^A) = ^sine^-A^sine^-^Ae^cose^ (12) 

y'A = (^-A/^cosCe^-Ae^) = ^cose^-A^cose^AÖ^sine^ 

and 

x'B = (RB-ARJsm(QB-MB) = ^ine^-A^ine^-^AÖ^cose^ (13) 

yB = (^-A^cosCe^-AÖ^) = ^cose^-A^cosÖ^+^Ae^sine^ 

The second order terms involving AR and A6 have been neglected in Eqs.(12) and (13). If a 

return is received from both sites A and B on the same track, the x-component and y-component 

of Eqs.(12) and (13) should be the same in the common coordinate plane.   That is, 

X
SA

+X
A 

= X
SB

+X
B (14) 

ysA+v!i = ySB
+yB 

Equation 14 can be rewritten as follows: 

P = xA-xB = sinÖ^A^-sine^AÄ^+^cose^Ae^-^cose^AÖ^ ,15^ 
Q = yA-yB = cosB^A/^-cosÖ^AÄ^-i^sine^Ae^+iR^sine^Ae^ 

where ( xA, yA ) and ( Xß, yB ) represent the division coordinates of the returns from sites A and 

B given as follows: 

11 



Figure 4 Registration geometry 

12 



XA  = XSA+RASinQA yA   = ySA+RACOsQA 

*B = XSB+X^B yB  = ySB+RBCOsQB 
(16) 

Multiplying the x-component of Eq.(15) by sin QA and the y-component of Eq.(15) by cos QA, and 

adding the two resultant equations yield: 

where 

PP = A^-cosO^-e^A^-Ä^sinCe^-e^Ae^ 
QQ = -cosce^-e^A^+A^+^since^-e^Ae^ 

PP = &A-xJsinBA+(yA-yJcQsQA 

QQ = (^-^sine^+Cyfi-^cose^ 

(17) 

(18) 

Equation 17 is an underdetermined linear system of equations. There are four unknown, 

namely, ( ARA, ARß, AÖ^, AQB ), and only two equations where P, Q and the coefficients of the 

equations can be computed for each pair of returns that is received from sites A and B. In order 

to solve for the unknowns, the RTQC algorithm tries to obtain two additional equations to make 

the registration equations a 4 x 4 system. 

To do that, an imaginary line is drawn between sites A and B (Figure 4 ), and data points 

are grouped according to whether they are in sample area 1 or 2, which are simply the area either 

above or below the site line. Each time sites A and B report the position of a track in area 1, 

P and Q as well as the coefficients of ARA, A/^, AG^ and A9fi in Eq.(17) are computed. Running 

averages of these values are maintained and Eq.(17) becomes 

PP, 

QQl 

l -cos(eAl-eBI) o 

-cos^. -e„.) l 

-RB]sin(6AI-QBI) 

RA,sm{6ArBBI) 0 

ARA 

A*, 

A6„ 

A6, 

(19) 

where 
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PPX = (xA1-xB1)smQA^(yAryB1)cosQ Al 

QQi = (xBrxAi)sinQBi+(yBryAi)cosQ 

(20) 
Bl 

where the horizontal bar denotes the mean of the sample. A similar data gathering process 

is accomplished for returns in area 2 resulting in two additional equations. Putting the two sets 

of equations together yields a linear system of four equations: 

ppx 

<?<?, 

pp2 

[QQ2\ . 

1 -cosce^-V -RB]sin(6ArQB1) 

'Al   "Bl> * RAlski(QAr6Bl) 0 -cosce^-e^) l 

1 -cos(6^-eB2) o :wpj 

-cosce^-e^) 
■'A2   VB2- 

i        FlinTe^O 
B2JX"^A2   yjB2> 

'A2°*"^A2   "B2> 0 

**A 

A6D 

(21) 

The requirement for separate areas above and below the line through the sites is apparent 

from Eq.(21); in fact, the first and the second equation of Eq.(21) are identical to the third and 

the fourth one, respectively. In order to have linear independence so as to provide a unique 

solution to the four unknowns, data from area 1 are used to calculate the coefficients in the first 

two equations of Eq.(21), whereas data from area 2 are used to calculate the coefficients in the 

last two equations. 

The basic idea of the RTQC algorithm is that the radar return of the same target from two 

radars should have the same position. By equating the x and y positions of the same target from 

two radars, two equations for the radar bias given in Eq.(15) can be derived. However, instead 

of solving Eq.(15) directly, the RTQC algorithm attempts to construct two more "independent" 

equations as given by Eq.(21). Apparently, this modification suffers from two pitfalls. First, 

the solution obtained by solving Eq.(21) is not an optimal solution for Eq.(15), which is the 

equation derived from the basic assumption. More precisely, the biases obtained by solving 

Eq.(21) do not really give a close solution to Eq.(15) for all radar plots. Second, to obtain the 

four equations given in Eq.(21), we need to have data from area 1 and area 2.   This requirement 

14 



severely restrict the application of the RTQC algorithm. As we can see in Figure 3, for some 

radars in the CW, all the tracks lie in one side of the site line only. In such cases, the RTQC 

algorithm cannot even be applied. In addition, the approach used in RTQC to construct two 

more independent equations artificially does not guarantee that the 4 x 4 matrix in Eq.(21) must 

have a full rank. 

4. THE LEAST SQUARE RTQC ( LS-RTQC ) ALGORITHM 

For an optimum solution of Eq.(15) in the least square sense, the registration problem 

should be considered as the problem of finding a solution to the basic RTQC equation, Eq.(15), 

for all the plots i = 1,2, •••, N where N is the total of plots in the overlapping region of two 

radars.   That is, 

p(0 = ^QA(i)ARA-smdB(i)ARB+RAmcosQA(i)AQA-RB(i)cosdB(i)AdB       (22) 

Q(i) = cose/j^ARA-cos6ß)ARB-R/i)smd^AQA+RBmsmeB(i)AQB 

where 

P(0 = xA(i)-xB(i) (23) 

The optimum solution can then be found by solving the following rectangular matrix 

P = AB 

where 

P = [ P(D, öd), P(2), 0(2), -, P(N), Q(N) f and B = [ ARA, ARB, AQA, A9fl J 

(24) 

T 

Since the system is overdetermined, the problem is basically equivalent to 

find      B       minimizing 1P-AB|| 

One solution to the least square problem Eq.(26) is by solving the normal equation: 

(26) 
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A = 

cosS/l) 

sm%A(2) 

cosB^) 

-sinO^l) ^(1)0088^(1) -J^cose^l)^ 

-cos6B(l) -RA(X)smQÄ(\) /?B(l)sin6a(l) 

-sinö^) RA{2)cosSA(2) -/?£(2)cos9fi(2) 

-cose^Q) -fl^sinÖ^) RB{2)s\xtiB{2) 

sinG^A/)   -sin8B(7V)   RA(N)cosQA(N)   -RB(N)cosQB(N) 

coseA(N)   -cosdB(N)   -RA(N)sindA(M)    RB(H)smQB(N) 

ATAB = ATP 

(25) 

(27) 

where matrix ATA is an 4 x 4 real symmetric matrix. Since a real symmetric matrix is normal, 

we can use the Fredholm Alternative Theorem [6] to find out whether or not Eq.(27) has a 

solution. There are two alternatives, depending on whether or not ArA is nonsingular. If ArA 

is nonsingular, we of course have a unique solution for Eq.(27), namely 

B = {ATAYXATP 

Applying the singular value decomposition (SVD) [7] to the matrix A, we have 

A = UXVT 

(28) 

(29) 

where the matrix U consists of the left singular vectors of A, the matrix V contains the right 

singular vectors of A, and Z is a diagonal matrix whose elements are the singular values of A. 

We let o^fyZ - > ak > 0 be the singular values, where k is the rank of A. Then ArA 

= V27XVr. Since JJI. is an 4 x 4 diagonal matrix with diagonal elements a,2, -, ak
2, ArA 

is nonsingular if and only if the rank k of A equals 4. Therefore, Eq.(27) has a unique solution 

if and only if the rank of A equals 4. 

On the other hand, if ArA is singular, the Fredholm Alternative Theorem tells us that 

Eq.(27) is solvable if and only if A7!» is orthogonal to all eigenvectors of ATA associated with 

the eigenvalue zero.    Since V contains the eigenvectors, Eq.(27) is solvable if and only if 
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vftA7*) = 0 for i = Jfc+1, -, 4.   Since Ar = \I?XJT and V is orthogonal, 

vjATP = vfV2TUTP = 0TUTP = 0 (30) 

for i > k.   Therefore, Eq.(27) has a solution even when ArA is singular. 

At this point it would be natural to assume that Eq.(27) provides the way to compute a 

solution to the least square problem; this assumption is correct, but one usually avoid actually 

computing the matrix ArA since this matrix may be ill-conditioned. To overcome this problem, 

the SVD is usually recommended.   Consider the least square problem 

IAB-PI = IU2VTB-P\\ = WUB'-U^l    where   B1 = VTB (31) 

Therefore B solves the least square problem Eq.(26) if and only if B'= VrB solves: 

minimize     V&B'-P'l      where   P1 = UTP <32> 

But since 

WB'-P'I = ^o^-p[f^{oj>i-p^p'i^^p:2 (33) 

this latter problem is solved by letting b] = P,7a, for i = 1, •••, k, and the least square B is 

given by setting bk+1' = — = b4' and B = VB'.   That is, 

B = V2+UTP (34) 

where 

(E 0) 

and E is the k x k diagonal matrix whose ith diagonal element is eu = c,"1 for 1 < i < k. 

(35) 

To understand the efficiency of this SVD-based least-square (LS) RTQC algorithm, NWS 

multiradar data are used.   We apply the SVD-based LS-RTQC algorithm to the data collected 
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from CW where the old RTQC fails. For radar NBO and NCO, all the tracks lie in one side in 

the overlapped radar coverage. The old RTQC algorithm is not applicable in this situation. 

The SVD-based LS-RTQC algorithm is then applied, and the results are plotted in Figure 5. 

There are totally 50 radar plots received by the radars, and the mean registration error is 3.1941 

nm. The radars will declare these two tracks received by the two radars as different tracks 

because of the large registration error. After the SVD-based LS-RTQC algorithm, the mean 

registration error becomes 0.7341 nm which is reduced by 77%. As depicted in the figure, the 

SVD-based LS-RTQC algorithm eliminates the two ghost tracks by putting them together to one 

track lying between the two ghost tracks. 

One disadvantage of finding the LS solution by performing SVD on the rectangular matrix 

A directly is that when the number of radar returns is large, it will require a large size of 

computer memory to store the matrix A. This problem is particularly serious for the NWS 

computer FYQ 93 which uses 18-bit fixed arithmetics and has a very small memory. A possible 

solution is to perform the SVD decomposition on the normal equation Eq.(27) where 

ATA = 

1 -cos(ßA-QJ 0 -R^in(QA-QB) 

-cosce^-e^ l ^since^-e^) o 

0 

-/^ince^-e^) 

RAsin(dA-dB) 

0 

R -R^cos^-ej 

-RARBcos(QA-6B) R 

(36) 

and 
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Figure 5 Tracks from two radars in CW before and after the LS-RTQC algorithm 
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ATP = 

N 

(37) 

T;E K^(0 -xB(i))sinBA(i)+0^(0 -^O))cos0^(O] 

1   " 
T:E K^O -^(0)8016,(0+^(0 -yA(i))cosBB(i)] 
/Vi-l 

1 " 
-E ^(ot(^(o -^(0)0039^(0-^(0 -^(0)^6^(01 

1  " 
T;E -^(Ot(^(0-V0)cos9£(0 -<yA® -yB(j))smdB(i)] 
** i-i 

This approach is exactly the same as before except that SVD is applied to ArA instead of A. 

The normal matrix ArA is a 4 x 4 matrix and its elements are the averages of the radar plots. 

These elements can be computed recursively, and therefore there is a less stringent requirement 

to computer memory and computation power. In fact, since the normal matrix ArA has a similar 

structure as the original RTQC matrix of Eq.(21), the computation requirement should be about 

the same as that of the old RTQC algorithm. This implies that the present computing facility 

at the Canada's Regional Operations Control Center at North Bay should not encounter any 

difficulty. 

5. ANALYSIS OF THE NORTH WARNING SYSTEM DATA 

Data sets from CW: DREOl, radars NC0 and ND0 ( Figure 6 ), and from CE: DRE03, 

radars NF0 and NGO ( Figure 7 ), are used to evaluate the performance of the LS-RTQC 

algorithm. In Figures 8 and 9, the bias estimates and the distance between the tracks from the 

two radars after the application of the LS-RTQC algorithm are investigated. When the number 

of points increases, the bias converges to a steady state value as expected. However, the bias 

in azimuth of radar NC0 of DREOl has some fluctuation and does not converge to a constant. 

A similar behavior is observed for ND0 of the same data set. The distance after registration 

increases and then saturates when the number of points is greater than 400.    This observation 
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Figure 6 Common tracks of radar NCO and NDO (DREOl) 
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Figure 7 Common tracks of radar NFO and NGO (DRE03) 
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contradicts with what we expect from estimation theory. We also plot the error reduction rate 

of these two data sets versus the number of measurements used for the registration calculation 

in Figures 8 and 9. The error reduction rate by the LS-RTQC algorithm for the first data set 

drops from 90% to about 70% when the number of measurements increases from 10 to 400. This 

strange phenomenon is not observed in the CE data. For the CE data set, the bias appears to 

converge smoothly, and the error reduction rate increases as the number of points for registration 

calculation increases. However, the diagram of the distance between tracks after registration 

indicates that the error goes up in the range of 10 to 110 points and then drops down. Hence, 

the error reduction rate is not a monotonic increasing curve as expected. Its shape is a concave 

up parabola instead. 

The observation above indicates that the bias are not constant as assumed in the 

registration calculation. These variable bias may have been caused by the measurement noise 

and errors from the stereographic projection. To get a better understanding of the performance 

of the LS-RTQC algorithm on the NWS data, we perform the same analysis on a single track 

from each data set. In particular, track #3 of Figures 6 and 7 are chosen for the analysis. The 

results for DREOl and DRE03 are plotted in Figures 10 and 11 respectively. The bias for 

DREOl converge to fixed values but the error reduction rate decreases when the number of 

points is greater than 140. On the other hand, the bias for DRE03, azimuth bias of NF0, range 

and azimuth bias of NGO, vary from time to time, but the error reduction rate increases smoothly 

and then saturates as expected. The unexpected error reduction of DREOl and bias convergence 

of DRE03 indicate that the uncertainty due to the measurement noise and stereographic 

projection not only affects the registration calculation in the spatial domain, i.e., from track to 

track, it also introduces estimation error in the temporal domain. In fact, when we compute the 

bias for all different tracks of these two files, we observe that the bias estimates based on 

individual tracks are quite different ( see Table 1 ). 

We plot the distances between the tracks from two radars before and after the registration 

versus the number of tracks in Figure 12. As we observe in the previous analysis, using more 

tracks for the registration calculation does not improve the bias estimation due to the spatial 
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uncertainty.   From Figure 12, the error reduction rate of the registration calculation seems to be 

insensitive to the number of tracks.   We also plot the error reduction rate based on different 

Table 1 Bias estimate of the CW and CE data using the LS-RTQC algorithm 

file radars        track ARA (nm) ARB (nm) A8A (degree) A9B (degree) 

DRE03 NFONGO   1 -0.4822 -0.8087 0.0151 0.0100 

2 -0.1688 -0.4305 0.0163 0.0099 

3 -0.0181 -0.2666 0.0181 0.0095 

4 -0.3105 -0.4247 0.0189 0.0118 

5 -0.5888 -0.2208 0.0168 0.0086 

6 0.6541 -1.0015 0.0184 0.0109 

DREOl NCONDO  1 -0.2533 0.2706 0.0042 0.0083 

2 1.8746 0.8496 0.0044 0.0025 

3 0.2006 -0.0298 0.0058 0.0119 

4 -2.0424 2.1804 0.0071 0.0132 

5 -0.2509 0.5019 0.0058 0.0129 

tracks versus the tracks' locations from these two data sets. The results are plotted in Figure 

13. For both data sets, we observe that a higher error reduction rate is achieved for tracks that 

are closer to the site line ( in both distance and azimuth ). The registration calculation 

procedure is therefore location dependent and there are some locations which provide better 

estimates. This observation implies that the stereographic projection error may be the 

major cause of this registration uncertainty. 

Because the bias estimates from different tracks do not compromise, the registration bias 

cannot be treated as constant as assumed. The consequence is that the registration calculation 

process must be performed many times to update the estimates. In other words, the bias are 

treated as time-varying parameters.   Therefore, to evaluate the efficiency of a registration 
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calculation process for the NWS, we need to consider how well an estimate generalizes to other 

measurement data not being used in the estimation process. 

In the first generalization experiment, we use 15 points from a single track to get the bias 

estimates and apply the estimates to other measurement points of the same track. The results 

are reported in Table 2. When the number of testing points increase from 20 to 90, then errors 

reduced are approximately doubled for both cases. Comparing with the error with registration, 

the errors for 90 testing points are about 1/2 of them for both CW and CE data sets. Since only 

15 points are used in the registration calculation, a reasonable generalization is observed for data 

about six times of its original size. Next, we perform the same analysis on data from different 

tracks. Again, 15 points are used in the registration calculation. The results are reported in 

Table 3. Interestingly, the generalization ability of the LS-RTQC algorithm for multiple tracks 

is observed to be better than that for a single track. For DRE03, the registration error is about 

3.6 nm before the LS-RTQC algorithm and is about 0.95 nm after. The registration error is 

hence reduced by 74%. The interesting point is that the error reduction rate almost does not 

change for different numbers of testing points ( from 10 to 120 ). In other words, the bias 

estimated by the LS-RTQC algorithm using that 15 points work very well for the next 120 

measurement points.    For DREOl, the generalization result is not as good as that of DRE03. 

When the number of testing points increases from 10 to 80, the error reduction rate is about 

80%. Although the reduced error increases slightly, it may be the result of the increase of the 

distances between tracks. However, when more testing points are used, the reduced error 

increases quickly, and the error reduction rate drops down to 35% only. This indicates the LS- 

RTQC algorithm has a poorer generalization ability for this CW data. For a 15 points 

registration calculation, the estimates can be used only for the next 80 to 90 measurements. In 

other words, the registration calculation procedure must be carried very frequently to ensure a 

reliable radars alignment. The poor generalization ability observed in this CW data also 

indicates the data in CW may be more sensitive to the errors due to the stereographic projection. 

In conclusion, the generalization ability can be improved when multiple tracks are used in the 

bias calculation.   This is because the data used for bias estimation are more "representative". 

However, if the estimated bias start to fail for new measurements, the generalization ability 
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deteriorates much faster than that based on single track. 

Table 2 Generalization error using 15 points from a single track 

# of testing pts 

DREOICD DRE03FG 

error bef.        gen. error       error bef.        gen. error 

20 

30 

40 

50 

60 

70 

80 

90 

1.1208 

1.1238 

1.1306 

1.1676 

1.1750 

1.2199 

1.2657 

1.2958 

0.3442 

0.3702 

0.4300 

0.4566 

0.4798 

0.5173 

0.5645 

0.6003 

3.3172 

3.3140 

3.2919 

3.2826 

3.2439 

3.2202 

3.1097 

3.1770 

0.7117 

0.7931 

0.8851 

0.9760 

1.0806 

1.2656 

1.4800 

1.6397 

In the current RTQC procedure, there is a 2 nm check pre-processing procedure. More 

precisely, the operator will check the distance between the measurements from two radars. If 

the distance is less than 2 nm, this pair of measurements will be used in the registration 

calculation. Otherwise, the measurements are ignored and the operator will wait for another pair 

of measurements for the calculation. We apply the same 2 nm check to the LS-RTQC 

algorithm. The results are listed in Table 4. Many data sets do not contain any measurements 

which satisfy the 2 nm requirement and hence the registration calculation cannot be performed. 

In fact, 5 out of 10 of the real data sets for this experiment cannot go through this 2 nm check. 

In other words, the operator may need to wait for a very long time to get some measurements 

for the registration process. The problem may be more serious for the NWS since the NWS is 

observed to have the problem of low traffic density. However, comparing the reduced errors 

with the 2 nm check with those without using the 2 nm check, the error reduction rates 
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Table 3 Generalization error using 15 points from multiple tracks 

DREOICD DRE03FG 

# of testing pts error bef. gen. error error bef. gen. error 

10 1.4796 0.2146 3.6951 0.9022 

20 1.5519 0.2268 3.6493 0.9344 

30 1.5888 0.2336 3.6254 0.9246 

40 1.6301 0.2255 3.6270 0.9367 

50 1.6436 0.2355 3.6086 0.9512 

60 1.6613 0.2387 3.5765 0.9483 

70 1.6835 0.2446 3.5676 0.9625 

80 1.7353 0.3901 3.5619 0.9691 

90 1.7630 0.6710 3.5498 0.9727 

100 1.7722 0.8814 3.5468 0.9766 

110 1.7765 1.0376 3.5523 0.9735 

120 1.7767 1.1567 3.5533 0.9643 

apparently are much improved.    Therefore, the use of this 2 nm check have to be careful to 

avoid the situation of no measurements. 

Now we examine the need of the S VD decomposition. To do that, a standard technique 

called Cramer's rule [6] which uses the determinant and adjoint matrix, is employed to compute 

the registration errors, as what the original RTQC algorithm does. We implement a LS-RTQC 

( DET-based LS-RTQC ) which applies the Cramer's rule to solve Eqs.(27), (36) and (37). In 

the first experiment, we use two computer simulations to investigate the finite precision effects 

on the bias estimation. ( Since we do not know the correct bias of the real data, simulation is 

used here. ) The results are presented in Table 5. The bias of the two radars are given in the 

table. In the first simulation, there are totally four tracks and they are close to the site line. 

The SVD-based and DET-based LS-RTQC algorithms have the same error reduction rate and 
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Table 4 Effect of the 2 nm check on the LS-RTQC algorithm 

file radars error bef reg. error after error bef reg. error after 
( with the 2 nm check ) 

DREOl NAONBO 3.6638 0.6931 NA NA 

DREOl NBONCO 3.2027 0.6478 1.8416 0.2533 

DREOl NCONDO 1.4604 0.2813 1.4465 0.2986 

DRE03 NDO NEO 1.1036 0.7027 1.1036 0.7027 

DRE03 NEO NFO 3.4913 0.6464 NA NA 

DRE03 NFO NGO 3.4677 0.9034 1.5974 0.8131 

TEST3 NAO NBO 3.1941 0.7341 NA NA 

TEST3 NBONCO 3.1741 0.5072 NA NA 

TEST3 NCO NDO 1.3488 0.4087 1.3226 0.3976 

GROUPB1 NEO NFO 3.3606 1.0953 NA NA 

their bias are very close to the correct answer. When we decrease the precision to 4 bytes, both 

approaches still have the same performance. In the second simulation, we use only one track 

and increase the registration error to 2.0732 nm. In this case, we observe that the SVD-based 

LS-RTQC algorithm provides an accurate estimate for both 8 and 4 bytes. However, the DET- 

based approach does not work very well in this case. When the precision is 8 bytes, the DET- 

based LS-RTQC algorithm can still provide a reasonable error reduction but the estimated bias 

are not quite accurate. When the precision is decreased to 4 bytes, the DET-based LS-RTQC 

algorithm seems to fail completely. Not only the estimated bias are far from the ideal, the error 

after the registration calculation is also larger than that before the registration. 

We now compare the two approaches using real data. In most cases, the SVD-based LS- 

RTQC has a similar performance as the DET-based LS-RTQC. However, for the data set 

RTPQA2, radars NFO and NEO, there are two tracks and 124 points in the data file.   The error 
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Table 5 Finite precision effect on the LS-RTQC ( simulations ) 

SIMULATION 1: 

AR, = 1, AR2 = 1, AG, = 0.002 and A62 = 0.002, 4 tracks:! close to the site line 

method error bef. error after AR, AR2 AG, AG, precision 

SVD 1.81467 0.0035 

DET 1.81467 0.0035 

SVD 1.81467 0.0034 

DET 1.81467 0.0035 

1.0009 0.9982 0.00201 0.00202 8 bytes 

1.0006 0.9987 0.00201 0.00202 8 bytes 

0.9996 1.0003 0.00201 0.00201 4 bytes 

1.0006 0.9987 0.00201 0.00201 4 bytes 

SIMULATION 2: AR, = 1, AR2 = 1, AG, = 0.002 and AG2 = 0.002, 1 track: close to the site line 

method error bef.  error after AR, AR7 AG, AG, precision 

SVD 2.0732 0.0041 

DET 2.0732 0.6545 

SVD 2.0732 0.0041 

DET 2.0732 2.1877 

0.9996 0.9997 0.00201 0.00202 8 bytes 

0.8199 0.8199 0.0 0.0 8 bytes 

0.9996 0.9997 0.00201 0.00201 4 bytes 

1.6958 2.4225 0.0 0.0 4 bytes 

before registration is 3.5767 nm and the error between tracks after the registration by the SVD- 

based and the DET-based approach are 0.4873 and 0.5930 nm, respectively. For another data 

set RTPQA3, radars NA0 and NB0, the data file contains only one track and there are 57 points 

in total. The error before registration is 3.3154 nm and the error between tracks after the 

registration by the SVD-based and the DET-based approach are 0.3401 and 0.4921 nm, 

respectively. Based on the results of simulation and real data analysis, solving the LS-RTQC 

problem using the SVD method has a more accurate and robust performance than using the 

determinant. 

Using the CW data file, DRE03, radars NF0-NG0, we compare the computational 

35 



complexity of the RTQC and the LS-RTQC with SVD. For the RTQC algorithm, there are 

24.182 flops and the computation time is 0.2460 second. For the LS-RTQC algorithm, there are 

32.233 flops and the computation time is 0.1191 second. The computations are carried out using 

a SUN SPARC-II workstation. The computation time does not include accumulating the data 

samples and placing them in one area or the other. It does include forming the 4 x 4 matrix and 

inverting it. 

Finally we compare the performance of the LS-RTQC algorithm and the old RTQC 

method using more NWS data sets. The data were collected from different parts of the radar 

network at different times. The number of returns varies from zero to several hundreds. 

Because the old RTQC algorithm requires data in both sides of the site line, and the operator 

usually use the same number of plots on both sides to run the RTQC algorithm, we preprocess 

the data to satisfy this requirement to simulate the real RTQC operation. The registration errors 

for all the data sets are listed in Table 6. Out of the 21 sets of data, 7 of them have data on one 

side only. The RTQC algorithm is therefore not applicable. Among the other 14 cases, the LS- 

RTQC has better performances for 12 of them in terms of error reduction. Based on Table 6, 

we observe that the RTQC algorithm works properly for most cases except in some situations 

where it is not applicable. In terms of error reduction, the LS-RTQC algorithm does not seem 

to have a significant advantage over the RTQC method. However, the LS-RTQC algorithm is 

more robust and generally applicable. 

We also compare the generalization ability of the LS-RTQC and old RTQC algorithm 

since it directly affects the applicability of the bias estimates. The results are listed in Table 7. 

Based on this analysis, we observe that the LS-RTQC algorithm always has a better 

generalization ability than the old RTQC method. In other words, the LS-RTQC algorithm not 

only try to reduce the registration errors by pushing the tracks together, it also provides bias 

estimates which are closer to the correct bias of the radars. 
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Table 6 Comparison of registration error using the RTQC and LS-RQTC algorithm 

file radars error bef. reg. (nm)   # pts RTQC (nm)    LS-RTQC (nm) 

GROUPB1 NEONFO 3.3606 30 0.2803 0.2809 

DREOl NAONBO 3.1023 26 0.2667 0.2718 

DREOl NBONCO 3.2027 208 NA 0.3048 

DREOl NCONDO 1.4604 200 0.2032 0.1843 

DRE03 NDO NEO 1.1036 42 0.3783 0.3575 

DRE03 NEONFO 3.4913 200 0.4650 0.4547 

DRE03 NFONGO 3.4677 200 0.3238 0.3205 

TEST3 NAONBO 3.1941 38 NA 0.2123 

TEST3 NBO NCO 3.1741 16 0.2294 0.2293 

TEST3 NCO NDO 1.3488 98 0.2630 0.2317 

GROUPA1 NAO NBO 3.4737 170 0.3139 0.3089 

GROUPA1 NBO NCO 3.7864 48 NA 0.3552 

GROUPA2 NAO NBO 3.2430 54 0.3425 0.3048 

GROUPA2 NCO NDO 0.6209 111 NA 0.1368 

PACE1 NKO NJO 1.0613 200 0.4242 0.3856 

PACE1 NJO NHO 0.5510 200 0.4885 0.4480 

PACE1 NHO NGO 1.6635 200 0.4550 0.4542 

RTPQA2 NGONFO 3.2903 188 0.2976 0.2580 

RTPQA2 NFO NEO 3.5767 124 NA 0.2793 

RTPQA2 NEO NDO 1.4200 116 NA 0.2566 

RTPQA3 NAO NBO 3.3154 57 NA 0.2873 
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Table 7 Generalization ability of the LS-RTQC and RTQC algorithm 

file radars        # of points 
for estimation 

# of points 
for testing before 

errors (nm) 
LS-RTQC RTQC 

DREOl NAONBO 4 40 4.4469 0.5844 0.5844 

DREOl NCONDO 200 40 1.6848 0.6237 1.2205 

DRE03 NEONFO 200 40 4.1853 1.2706 7.8250 

DRE03 NFO NGO 200 40 3.0602 1.2609 1.4688 

GROUPA1 NAO NBO 164 40 3.6061 0.2728 0.6157 
GROUPB1 NEO NFO 30 40 3.5839 0.3818 0.6858 
GROUPB1 NFO NGO 158 40 3.2650 1.4312 1.6043 
GROUPB1 NGO NHO 200 40 2.0295 0.4957 0.5104 
RTPQA2 NFO NGO 36 40 2.9704 0.5673 0.6806 

6. CONCLUSIONS AND DISCUSSIONS 

In this report, a cost-effective LS-RTQC routine is proposed for the NWS. The LS- 

RTQC algorithm uses least square estimation to obtain the position bias and the SVD to solve 

the registration equation. The LS-RTQC algorithm eliminates the need of measurements from 

both sides of the radar site line as required by the current RTQC routine. As demonstrated in 

the analysis, the least-square approach is essential for the NWS since in many NWS data sets, 

tracks are all on one side of the site line. The lack of data makes the LS-RTQC algorithm more 

favorable for the NWS. The use of the LS-RTQC algorithm does not introduce any additional 

computational load to the registration problem. Comparing the equations used for RTQC and 

LS-RTQC, the FYQ 93 computer in the NWS should be able to handle the LS-RTQC algorithm. 

Based on the real data analysis, the LS-RTQC algorithm is found to be more robust, accurate 

and computationally faster than the old RTQC method. 
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